Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
Cell Syst ; 15(2): 134-148.e7, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340730

RESUMO

Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Epistasia Genética , Escherichia coli , Epistasia Genética/genética , Escherichia coli/genética , Bactérias/genética , Expressão Gênica
3.
Neurobiol Aging ; 134: 84-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039940

RESUMO

Although genome-wide association studies have identified multiple Alzheimer's disease (AD)-associated loci by selecting the main effects of individual single-nucleotide polymorphisms (SNPs), the interpretation of genetic variance in AD is limited. Based on the linear regression method, we performed genome-wide SNP-SNP interaction on cerebrospinal fluid Aß42 to identify potential genetic epistasis implicated in AD, with age, gender, and diagnosis as covariates. A GPU-based method was used to address the computational challenges posed by the analysis of epistasis. We found 368 SNP pairs to be statistically significant, and highly significant SNP-SNP interactions were identified between the marginal main effects of SNP pairs, which explained a relatively high variance at the Aß42 level. Our results replicated 100 previously reported AD-related genes and 5 gene-gene interaction pairs of the protein-protein interaction network. Our bioinformatics analyses provided preliminary evidence that the 5-overlapping gene-gene interaction pairs play critical roles in inducing synaptic loss and dysfunction, thereby leading to memory decline and cognitive impairment in AD-affected brains.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Polimorfismo de Nucleotídeo Único/genética , Epistasia Genética/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudo de Associação Genômica Ampla , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
4.
Biosystems ; 232: 105000, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586656

RESUMO

Metabolic control analysis has long been used as a systemic model of the genotype-phenotype (GP) relationship. By considering kinetic parameters and enzyme concentrations as reflecting the genotype level and metabolic fluxes or pools as phenotypes related to fitness, MCA has given a biological basis to the relationship between these two levels. The non-linear and concave relationship between enzymes and fluxes can account for common genetic effects that reductionist approaches have been powerless to explain, such as the dominance of active alleles over less active alleles, the various types of epistasis and heterosis, and reveals the structural links between these genetic effects. The summation property of the flux control coefficients accounts for the L-shaped distribution of Quantitative Trait Locus (QTL) effects, irrespective of other possible causes. Metabolic models of response to selection results in evolutionary scenarios that are markedly different from those derived from the classical infinitesimal model of quantitative genetics. In particular, evolution towards selective neutrality appears to be a consequence of the diminishing return of the flux-enzyme relationship. In this paper, we survey the historical and recent achievements of MCA in genetics, quantitative genetics and evolution, focusing on epistasis and the evolution of flux in relation to enzyme concentrations.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Genótipo , Cinética , Epistasia Genética/genética
5.
Annu Rev Biomed Data Sci ; 6: 377-395, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37196359

RESUMO

Despite monumental advances in molecular technology to generate genome sequence data at scale, there is still a considerable proportion of heritability in most complex diseases that remains unexplained. Because many of the discoveries have been single-nucleotide variants with small to moderate effects on disease, the functional implication of many of the variants is still unknown and, thus, we have limited new drug targets and therapeutics. We, and many others, posit that one primary factor that has limited our ability to identify novel drug targets from genome-wide association studies may be due to gene interactions (epistasis), gene-environment interactions, network/pathway effects, or multiomic relationships. We propose that many of these complex models explain much of the underlying genetic architecture of complex disease. In this review, we discuss the evidence from multiple research avenues, ranging from pairs of alleles to multiomic integration studies and pharmacogenomics, that supports the need for further investigation of gene interactions (or epistasis) in genetic and genomic studies of human disease. Our goal is to catalog the mounting evidence for epistasis in genetic studies and the connections between genetic interactions and human health and disease that could enable precision medicine of the future.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Humanos , Epistasia Genética/genética , Genoma , Genômica
6.
PLoS Comput Biol ; 19(2): e1010896, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791146

RESUMO

Identifying drivers of viral diversity is key to understanding the evolutionary as well as epidemiological dynamics of the COVID-19 pandemic. Using rich viral genomic data sets, we show that periods of steadily rising diversity have been punctuated by sudden, enormous increases followed by similarly abrupt collapses of diversity. We introduce a mechanistic model of saltational evolution with epistasis and demonstrate that these features parsimoniously account for the observed temporal dynamics of inter-genomic diversity. Our results provide support for recent proposals that saltational evolution may be a signature feature of SARS-CoV-2, allowing the pathogen to more readily evolve highly transmissible variants. These findings lend theoretical support to a heightened awareness of biological contexts where increased diversification may occur. They also underline the power of pathogen genomics and other surveillance streams in clarifying the phylodynamics of emerging and endemic infections. In public health terms, our results further underline the importance of equitable distribution of up-to-date vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Epistasia Genética/genética , Genômica
7.
Artigo em Inglês | MEDLINE | ID: mdl-35061588

RESUMO

Epistasis detection is vital for understanding disease susceptibility in genetics. Multiobjective multifactor dimensionality reduction (MOMDR) was previously proposed to detect epistasis. MOMDR was performed using binary classification to distinguish the high-risk (H) and low-risk (L) groups to reduce multifactor dimensionality. However, the binary classification does not reflect the uncertainty of the H and L classification. In this study, we proposed an empirical fuzzy MOMDR (EFMOMDR) to address the limitations of binary classification using the degree of membership through an empirical fuzzy approach. The EFMOMDR can simultaneously consider two incorporated fuzzy-based measures, including correct classification rate and likelihood rate, and does not require parameter tuning. Simulation studies revealed that EFMOMDR has higher 7.14% detection success rates than MOMDR, indicating that the limitations of binary classification of MOMDR have been successfully improved by empirical fuzzy. Moreover, EFMOMDR was used to analyze coronary artery disease in the Wellcome Trust Case Control Consortium dataset.


Assuntos
Doença da Artéria Coronariana , Epistasia Genética , Humanos , Epistasia Genética/genética , Redução Dimensional com Múltiplos Fatores , Modelos Genéticos , Simulação por Computador , Doença da Artéria Coronariana/genética , Polimorfismo de Nucleotídeo Único , Algoritmos
8.
PLoS Comput Biol ; 18(9): e1010524, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121840

RESUMO

The mapping from genotype to phenotype to fitness typically involves multiple nonlinearities that can transform the effects of mutations. For example, mutations may contribute additively to a phenotype, but their effects on fitness may combine non-additively because selection favors a low or intermediate value of that phenotype. This can cause incongruence between the topographical properties of a fitness landscape and its underlying genotype-phenotype landscape. Yet, genotype-phenotype landscapes are often used as a proxy for fitness landscapes to study the dynamics and predictability of evolution. Here, we use theoretical models and empirical data on transcription factor-DNA interactions to systematically study the incongruence of genotype-phenotype and fitness landscapes when selection favors a low or intermediate phenotypic value. Using the theoretical models, we prove a number of fundamental results. For example, selection for low or intermediate phenotypic values does not change simple sign epistasis into reciprocal sign epistasis, implying that genotype-phenotype landscapes with only simple sign epistasis motifs will always give rise to single-peaked fitness landscapes under such selection. More broadly, we show that such selection tends to create fitness landscapes that are more rugged than the underlying genotype-phenotype landscape, but this increased ruggedness typically does not frustrate adaptive evolution because the local adaptive peaks in the fitness landscape tend to be nearly as tall as the global peak. Many of these results carry forward to the empirical genotype-phenotype landscapes, which may help to explain why low- and intermediate-affinity transcription factor-DNA interactions are so prevalent in eukaryotic gene regulation.


Assuntos
Epistasia Genética , Modelos Genéticos , Epistasia Genética/genética , Aptidão Genética/genética , Genótipo , Mutação/genética , Fenótipo , Fatores de Transcrição
9.
J Mol Evol ; 90(6): 429-437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178491

RESUMO

Epistasis is an evolutionary phenomenon whereby the fitness effect of a mutation depends on the genetic background in which it arises. A key source of epistasis in an RNA molecule is its secondary structure, which contains functionally important topological motifs held together by hydrogen bonds between Watson-Crick (WC) base pairs. Here we study epistasis in the secondary structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by examining properties of derived alleles arising from substitution mutations at ancestral WC base-paired and unpaired (UP) sites in 15 conserved topological motifs across the genome. We uncover fewer derived alleles and lower derived allele frequencies at WC than at UP sites, supporting the hypothesis that modifications to the secondary structure are often deleterious. At WC sites, we also find lower derived allele frequencies for mutations that abolish base pairing than for those that yield G·U "wobbles," illustrating that weak base pairing can partially preserve the integrity of the secondary structure. Last, we show that WC sites under the strongest epistatic constraint reside in a three-stemmed pseudoknot motif that plays an essential role in programmed ribosomal frameshifting, whereas those under the weakest epistatic constraint are located in 3' UTR motifs that regulate viral replication and pathogenicity. Our findings demonstrate the importance of epistasis in the evolution of the SARS-CoV-2 secondary structure, as well as highlight putative structural and functional targets of different forms of natural selection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Epistasia Genética/genética , RNA Viral/genética , Conformação de Ácido Nucleico , COVID-19/genética , Mutação
10.
ACS Synth Biol ; 11(5): 1971-1983, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35507897

RESUMO

Enzyme evolution has enabled numerous advances in biotechnology and synthetic biology, yet still requires many iterative rounds of screening to identify optimal mutant sequences. This is due to the sparsity of the fitness landscape, which is caused by epistatic mutations that only offer improvements when combined with other mutations. We report an approach that incorporates diverse substrate analogues in the screening process, where multiple substrates act like multiple agents navigating the fitness landscape, identifying epistatic mutant residues without a need for testing the entire combinatorial search space. We initially validate this approach by engineering a malonyl-CoA synthetase and identify numerous epistatic mutations improving activity for several diverse substrates. The majority of these mutations would have been missed upon screening for a single substrate alone. We expect that this approach can accelerate a wide array of enzyme engineering programs.


Assuntos
Epistasia Genética , Biologia Sintética , Epistasia Genética/genética , Mutação/genética
11.
Sci Rep ; 12(1): 2046, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132109

RESUMO

Physiological and haplogroup studies performed to understand high-altitude adaptation in humans are limited to individual genes and polymorphic sites. Due to stochastic evolutionary forces, the frequency of a polymorphism is affected by changes in the frequency of a near-by polymorphism on the same DNA sample making them connected in terms of evolution. Here, first, we provide a method to model these mitochondrial polymorphisms as "co-mutation networks" for three high-altitude populations, Tibetan, Ethiopian and Andean. Then, by transforming these co-mutation networks into weighted and undirected gene-gene interaction (GGI) networks, we were able to identify functionally enriched genetic interactions of CYB and CO3 genes in Tibetan and Andean populations, while NADH dehydrogenase genes in the Ethiopian population playing a significant role in high altitude adaptation. These co-mutation based genetic networks provide insights into the role of different set of genes in high-altitude adaptation in human sub-populations.


Assuntos
Adaptação Fisiológica/genética , Altitude , Epistasia Genética/genética , Genes Mitocondriais/genética , Genes Mitocondriais/fisiologia , Mitocôndrias/genética , Mitocôndrias/fisiologia , Etiópia , Humanos , Polimorfismo Genético , América do Sul , Tibet
12.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169080

RESUMO

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Assuntos
Criptococose/genética , Cryptococcus/genética , Epistasia Genética/genética , Evolução Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Hifas/crescimento & desenvolvimento , Morfogênese , Fenótipo , Locos de Características Quantitativas/genética , Reprodução/genética , Reprodução Assexuada
13.
PLoS Pathog ; 18(1): e1010149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990464

RESUMO

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Micoses/genética , Doenças das Plantas/genética , Triticum/microbiologia , Resistência à Doença/genética , Suscetibilidade a Doenças , Epistasia Genética/genética , Interações Hospedeiro-Patógeno/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Virulência/genética
14.
Neurobiol Aging ; 109: 158-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740077

RESUMO

The Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 ('650) G versus A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 '650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while '650 G versus A carriage was related to more language comprehension network strength. In APOE ε4 carriers, '650 G-carriage led to less network strength with increasing age, while in non-G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.


Assuntos
Apolipoproteínas E/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Rede Nervosa/fisiologia , Caracteres Sexuais , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Cognição , Epistasia Genética/genética , Feminino , Genótipo , Haplótipos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
15.
Artigo em Inglês | MEDLINE | ID: mdl-33055017

RESUMO

Finding epistatic interactions among loci when expressing a phenotype is a widely employed strategy to understand the genetic architecture of complex traits in GWAS. The abundance of methods dedicated to the same purpose, however, makes it increasingly difficult for scientists to decide which method is more suitable for their studies. This work compares the different epistasis detection methods published during the last decade in terms of runtime, detection power and type I error rate, with a special emphasis on high-order interactions. Results show that in terms of detection power, the only methods that perform well across all experiments are the exhaustive methods, although their computational cost may be prohibitive in large-scale studies. Regarding non-exhaustive methods, not one could consistently find epistasis interactions when marginal effects are absent. If marginal effects are present, there are methods that perform well for high-order interactions, such as BADTrees, FDHE-IW, SingleMI or SNPHarvester. As for false-positive control, only SNPHarvester, FDHE-IW and DCHE show good results. The study concludes that there is no single epistasis detection method to recommend in all scenarios. Authors should prioritize exhaustive methods when sufficient computational resources are available considering the data set size, and resort to non-exhaustive methods when the analysis time is prohibitive.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Epistasia Genética/genética , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1495-1506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33301408

RESUMO

We propose a procedure for modeling a phenotype using QTLs which estimate the additive and dominance effects of genotypes and epistasis. The estimation of the model is implemented through a Bayesian approach which uses the data-driven reversible jump (DDRJ) for multiple QTL mapping and model selection. We compare the DDRJ's performance with the usual reversible jump (RJ), QTLBim, multiple interval mapping (MIM) and LASSO using real and simulated data sets. The DDRJ outperforms the available methods to estimate the number of QTLs in epistatic models and it identifies their locations in the genome, without increasing the number of false-positive QTLs in the considered data. Since QTL mapping is a regression model involving complex non-observable variables and their interactions, the model selection procedure proposed here is also useful in other areas of research. The application for identifying main and epistatic relevant QTLs to systolic blood pressure after salt intervention is our main motivation.


Assuntos
Epistasia Genética , Modelos Genéticos , Teorema de Bayes , Mapeamento Cromossômico/métodos , Epistasia Genética/genética , Fenótipo , Locos de Características Quantitativas/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-33989157

RESUMO

Detecting single nucleotide polymorphisms (SNPs) interactions is crucial to identify susceptibility genes associated with complex human diseases in genome-wide association studies. Clustering-based approaches are widely used in reducing search space and exploring potential relationships between SNPs in epistasis analysis. However, these approaches all only use a single measure to filter out nonsignificant SNP combinations, which may be significant ones from another perspective. In this paper, we propose a two-stage approach named EpiMC (Epistatic Interactions detection based on Multiple Clusterings) that employs multiple clusterings to obtain more precise candidate sets and more comprehensively detect high-order interactions based on these sets. In the first stage, EpiMC proposes a matrix factorization based multiple clusterings algorithm to generate multiple diverse clusterings, each of which divide all SNPs into different clusters. This stage aims to reduce the chance of filtering out potential candidates overlooked by a single clustering and groups associated SNPs together from different clustering perspectives. In the next stage, EpiMC considers both the single-locus effects and interaction effects to select high-quality disease associated SNPs, and then uses Jaccard similarity to get candidate sets. Finally, EpiMC uses exhaustive search on the obtained small candidate sets to precisely detect epsitatic interactions. Extensive simulation experiments show that EpiMC has a better performance in detecting high-order interactions than state-of-the-art solutions. On the Wellcome Trust Case Control Consortium (WTCCC) dataset, EpiMC detects several significant epistatic interactions associated with breast cancer (BC) and age-related macular degeneration (AMD), which again corroborate the effectiveness of EpiMC.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Algoritmos , Análise por Conglomerados , Epistasia Genética/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
18.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2654-2671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34181547

RESUMO

Proposing a more effective and accurate epistatic loci detection method in large-scale genomic data has important research significance for improving crop quality, disease treatment, etc. Due to the characteristics of high accuracy and processing non-linear relationship, Bayesian network (BN) has been widely used in constructing the network of SNPs and phenotype traits and thus to mine epistatic loci. However, the shortcoming of BN is that it is easy to fall into local optimum and unable to process large-scale of SNPs. In this work, we transform the problem of learning Bayesian network into the optimization of integer linear programming (ILP). We use the algorithms of branch-and-bound and cutting planes to get the global optimal Bayesian network (ILPBN), and thus to get epistatic loci influencing specific phenotype traits. In order to handle large-scale of SNP loci and further to improve efficiency, we use the method of optimizing Markov blanket to reduce the number of candidate parent nodes for each node. In addition, we use α-BIC that is suitable for processing the epistatis mining to calculate the BN score. We use four properties of BN decomposable scoring functions to further reduce the number of candidate parent sets for each node. Experiment results show that ILPBN can not only process 2-locus and 3-locus epistasis mining, but also realize multi-locus epistasis detection. Finally, we compare ILPBN with several popular epistasis mining algorithms by using simulated and real Age-related macular disease (AMD) dataset. Experiment results show that ILPBN has better epistasis detection accuracy, F1-score and false positive rate in premise of ensuring the efficiency compared with other methods. Availability: Codes and dataset are available at: http://122.205.95.139/ILPBN/.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Algoritmos , Teorema de Bayes , Epistasia Genética/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Programação Linear
19.
PLoS Genet ; 17(12): e1009972, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936656

RESUMO

The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Epistasia Genética/genética , Proteínas de Escherichia coli/genética , RecQ Helicases/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA de Cadeia Simples , Escherichia coli/genética , Exodesoxirribonucleases , Recombinação Homóloga/genética , Recombinação Genética/genética , Mutações Sintéticas Letais/genética
20.
J Neurochem ; 159(5): 826-839, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34618942

RESUMO

The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.


Assuntos
Epistasia Genética/genética , Glucosilceramidase/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Animais , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...